

## PROFESSIONAL SERVICES S.N.C.

Di Belei & C s.n.c. Loc Bonsciano 40 06012 Città di Castello PG

Tel. Fax 075 930 2290 Lav. POLISTIROLO

mail\_p.services@libero.it



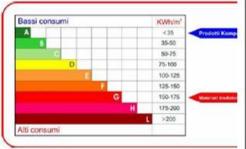








Nerte composto da sfere addittivate RIGENERATE Pronte




Essendo Un prodotto <u>rigenerato</u> e rispondente alle norme UNI 10667-14:2003 relative ai cementi alleggeriti viene inserito nella graduatoria dei materiali impiegabili per la costruzione di case a basso consumo energetico, In quanto:

- A Migliori caratteristiche meccaniche del perlinato vergine B<sup>®</sup> Risparmio di polimeri derivanti dal petrolio per creare un prodotto già esistente
- C Reintegro del materiale nel ciclo produttivo edilizio
- D Prodotto atto al risparmio energetico e ambientale







<u>Poli.mix 500 A</u> è formato da perle miste di polistirolo rigenerato di spessore che va da 1 a 3 - 4 mm di diametro che integrato con un addittivo specifico lo rende miscibile e di facile lavorabilità.

Viene fornito direttamente in sacchi rinforzati da 500 litri con legatura a strappo in modo da rendere l'operazione di carico di veloce e senza fuoriuscite.



## Professional Services s.n.c

Stab. Via dell'Industria 06018Calzolaro Umbertide TLFax 075 930 22 90 338-5617536 e-mail p.services@libero.it Resp Vend Prof.Giovanni Carrozza



# Caratteristiche tecniche

#### CALCESTRUZZI LEGGERI: POLISTIROLICI

Il modo più classico di alleggerire i calcestruzzi a base di cemento portland è la sostituzione dell'inerte siliceo o calcareo con inerti virtual in sferoidi e grumi di polisterolo, con densità in mucchio di circa 30 Kg/m³. Volume dei vuoti (1/m³ oppure dm/m³) in mucchio 400 Comportamento con acqua (non solubile), non igroscopico: assorbe in minima parte l'acqua di impasto durante la mescola e consenti l'impiego del normale rapporto A/C - 0,5÷0,55. Il comportamento al fuoco: sublima al bunsen senza emanazioni venefiche Può consentire con inerti reali e sopporta procedimenti di maturazione accelerata mediante additivi o trattamenti fisici (vapore, curing, vacum ecc.). È necessario nell'impasto la presenza di additivo espandente, che consente la perfetta miscibilità con cemento e inerti. La consistenzi di terra umida è facilmente lavorabile e non scorre su piani inclinati.

#### DOSAGGI E RESISTENZA A COMPRESSIONE (per 1 m<sup>3</sup> di calcestruzzo) Si considera la densità al momento del getto dopo l'asciugatura la densità sarà inferiore del 5÷10%.

| Densità<br>a getto                            | Polisterolo                            | Cemento                                              | Sabbia                               | Acqua                                                | Resistenza a compressione $\delta$ [Kg /cm²] all'età |                                             |                                       |                                        |
|-----------------------------------------------|----------------------------------------|------------------------------------------------------|--------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------|---------------------------------------|----------------------------------------|
| Kg/m <sup>3</sup>                             | m <sup>3</sup>                         | Kg                                                   | Kg                                   | Kgol                                                 | 7 giorni                                             | 1 mese                                      | 6 mese                                | 1 anno                                 |
| 350<br>400<br>500<br>600<br>700<br>800<br>900 | 1<br>1<br>0,95<br>0,90<br>0,85<br>0,85 | 250<br>250<br>250<br>250<br>250<br>250<br>400<br>400 | 65<br>95<br>210<br>300<br>400<br>285 | 125<br>100<br>125<br>125<br>125<br>125<br>125<br>190 | 5<br>7<br>12<br>18<br>27<br>35<br>50<br>62           | 8<br>10<br>17<br>25<br>37<br>49<br>64<br>88 | 9<br>12<br>21<br>31<br>45<br>60<br>75 | 10<br>13<br>23<br>33<br>49<br>64<br>79 |
| 1200<br>1400                                  | 0,75<br>0,70                           | 450<br>450                                           | 540<br>710                           | 210<br>210                                           | 87<br>93                                             | 123<br>132                                  | 147<br>157                            | 156<br>166                             |

## **CONDUCIBILITÀ E CAPACITÀ TERMICHE**

Si riportano i dati ricavati per una piastra indefinita di materiale polistirolico, sottoposto ad un regime di flusso termico continuo e stazionario. Si indicano i coefficienti di conducibilità termica k e di trasmissione termica k con arrotondamenti alla prima cifra decimale nell'ipotesi di un rapporto fisso S/C=2/1 Dati ricavati per A/C =0.50 S/C=2/2

| Densita Y | λ          | K[Kcal/mh°C] per vari spessori in cm |     |     |      |     |      |      |  |
|-----------|------------|--------------------------------------|-----|-----|------|-----|------|------|--|
| kg/m³     | kcal/mh °C | 5                                    | 8   | 10  | 15   | 20  | 25   | 30   |  |
| 350       | 0,10       | 1,4                                  | 1,0 | 0,7 | 0,55 | 0,4 | 0,35 | 0,3  |  |
| 400       | 0,12       | 1,6                                  | 1,2 | 1,0 | 0,7  | 0,5 | 0,4  | 0,35 |  |
| 500       | 0,16       | 2,0                                  | 1,4 | 1,2 | 0,9  | 0,7 | 0,6  | 0,5  |  |
| 600       | 0,18       | 2,1                                  | 1,6 | 1,4 | 1,0  | 0,8 | 0,7  | 0,6  |  |
| 700       | 0,22       | 2,3                                  | 1,8 | 1,5 | 1,1  | 0,9 | 0,75 | 0,65 |  |
| 800       | 0,25       | 2,5                                  | 1,9 | 1,7 | 1,2  | 1,0 | 0,8  | 0,7  |  |
| 900       | 0,32       | 2,8                                  | 2,2 | 2,0 | 1,5  | 1,2 | 1,0  | 0,85 |  |
| 1000      | 0,38       | 3,0                                  | 2,5 | 2,2 | 1,7  | 1,4 | 1,2  | 1,0  |  |
| 1200      | 0,47       | 3,3                                  | 2,7 | 2,4 | 2,0  | 1,6 | 1,4  | 1,2  |  |
| 1400      | 0,54       | 3,5                                  | 3,0 | 2,6 | 2,2  | 1,8 | 1,6  | 1,4  |  |

Il coefficiente indicato con la lettera λ è definito "Conducibilità Termica" risulta pertanto che un materiale è tanto più isolante quanto minore è la sua conducibilità termica. Il valore ricavato è significativo per valutare il potenziale isolante prodotto ma non da la misura della "Barriera"che il coibente svolge nell'ostacolare il passaggio di calore. Questa è detta "Resistenza Termica" e si indica con R = S / λ In funzione dello spessore . La trasmittanza tremica K = 1/R rappresenta la quantità di calore che si propaga ed è espressa in – Kcal / mh°C

### ABBATTIMENTO ACUSTICO

calpestio fino a 61 dB

Con spessori di 5/6 cm abbiamo un abbattimento acustico di 15-20 dB Con spessori di 10-11 cm si arriva ad un abbattimento al

#### Comortamento al fuoco

Sublima senza esalazioni tossiche, si accende solo oltre i 450/500 q

Imfiammabilità

Non Infiammabile

Pericoli per la salute uman Nessun pericolo specifico Pericoli ambientali

Nessun pericolo specifico.

Sintomi ed effetti: Nessuno Inalazione: Nessuna misura specifica Contatto con la pelle: Nessuna misura specifica

Contatto con gli occhi: Nessuna misura specifica

Ingestione: Nessuna misura specifica Consiglio ai

soccorritori: Trattare sintomaticamente 5. Misure antincendio

Combustile; i prodotti della combustione comprendono monossido di carbonio, biossido di carbonio. Possono anche essere emessi fumo, che può ridurre la visibilità e tracce di stirene.

